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Abstract. Using an embedding technique introduced in a recent publication by one of us, we 
study the electronic structure of disordered binary alloys within a pair-cluster coherent 
potential approximation. 

In a recent publication, Mookerjee and Bardhan (1989) have introduced a method for 
determining the electronic structure of disordered systems that self-consistently takes 
into account the effect of clusters. The formalism is based on an adaptation to alloy 
systems of the embedding technique introduced by Inglesfield (1 981) for application to 
problems of interfaces and impurities. The method involves the partition of the Hilbert 
space in which the Hamiltonian of the Schrodinger equation under study is defined, into 
two subspaces I and I1 with an interface S between them. We choose the subspace I1 in 
such a way that the wavefunction V ( r )  can be assumed to be known in I1 and we choose 
a trial wavefunction q ( r )  in I that matches with V(r )  at the interface: q(rs)  = V(rS) .  We 
now produce an expression for the matrix element of the Hamiltonian X and minimise 
it with respect to variations of the trial wavefunction q ( r ) .  The mathematics of the 
process has been described in detail in the papers of Inglesfield (1981) and Mookerjee 
and Bardhan (1989). We end up with an effective Schrodinger equation with its effective 
X’ E I:  

( - i V 2  + V(r) - E ) q ( r )  + t6(n - ns) 8q/8ns + 6(n - ns) d2rsK(rs, r ; ) p ( r $ )  = 0 J 
or 

(XI - E ) q ( r )  = 0. 

The second term ensures that X f  is Hermitian in the subspace I alone, and the third term 
is a surface potential which describes the effect of I being embedded in the space 11. The 
eigenfunctions and eigenvalues of the above Schrodinger equation, defined only on the 
subspace I, are the solutions of the original full Schrodinger equation. The function 
K(r,  r f )  is the functional inverse of the Green function G(r, r’)  satisfying 

( - i V 2  + V(r) - E )  G(r, r’)  = 6(r  - r ’ )  

with r ,  r’ E I1 alone. 
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The Green function G(r, r ’ )  satisfies the usual boundary condition at infinity, but 
also satisfies the Neumann boundary condition that its normal derivative d Glans = 0 on 
the interface S.  

For a disordered alloy the region I is chosen to be a cluster of, say, muffin-tin 
potentials. Usually the shape of the interface S of a cluster is quite complicated and the 
construction of the relevant Green function G(r, r ’ )  with Neumann boundary conditions 
on it is difficult. In practice, one could take S to be a spherical surface that just contains 
the cluster under study. If we now introduce in I an overcomplete basis set to represent 
our Schrodinger equation, so that the optimal boundary condition on S may be satisfied, 
we do not usually face problems-we know this from the extensive applications to 
surfaces described by Inglesfield. In that case, it is also true that the interface S is never 
a plane, and is quite often corrugated. The bounding plane is chosen to be S and an 
overcomplete basis set is chosen in the semi-infinite I. 

In I1 we replace the disordered potential V(r) by a cluster translationally symmetric 
coherent potential Vcoh(r, E).  The coherent potential is obtained from the fact that if we 
now embed in this effective medium I1 a cluster with a particular configuration 0, then 
the extra scattering that the electron will suffer because of this added impurity is on 
average zero. 

where (X’ - EI)G(r, r’)  = 6(r- r ’ ) ,  while Go(r, r’)  is obtained from a Hamiltonian 
where the coherent potential Vcoh(r, E )  is substituted for the entire potential V(r). From 
(1) we see that X’ and hence also G depend on both Vu of the cluster in I and Vcoh through 
their dependence on K. ( ), denotes the average over the configurations 0. For a binary 
alloy 0 can take 2” values for a cluster of size n,  and the relevant probability is xxx;’, 
where there are m A-type atoms and m’ B-type atoms in the cluster and xA and xB are 
the concentrations of the two constituents in the alloy. 

The CPA and the CCPA that we have introduced here are exactly the existing CPA and 
CCPA, based on various techniques. However, we have expressed the same ideas in a 
more general form. If we expressed the equations (1) and (2) with a tight-binding basis, 
we would regenerate the standard tight-binding equations. For example, for a tight- 
binding basis the cluster version of (2) leads to the CCPA equation based on the augmented- 
space technique (Mookerjee and Bardhan 1989). Again, if we have muffin-tin, spheri- 
cally symmetric potentials, and we expand our wavefunctions and Green functions in 
spherical harmonics, we recover the standard KKRCPA and KKRCCPA. Our formulation, 
however, is very general. A general form of the potential may be used in the cluster, 
with arbitrary basis functions. Furthermore, the choice of the surface S is itself quite 
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general and need not necessarily follow an equipotential curve. This has been discussed 
in some detail in an earlier communication (Mookerjee and Bardhan 1989). 

In our earlier paper we examined several model cases in which a single potential was 
included in I .  In this paper we shall examine the effect of taking two potentials in I .  Our 
eventual aim is to estimate the pair potentials as one of the chief elements in studying 
order-disorder transitions in alloys (de Fontaine 1987). We believe that since a pair 
potential is intrinsically a two-site property, a cluster effective-medium approach should 
give a more accurate picture than an essentially single-site mean-field approximation 
such as the CPA. Accuracy is one of the essential features when one is estimating free 
energy, if one is to obtain physically significant phase diagrams. 

A fully fledged muffin-tin version of the coherent potential leads to 

where QE,(r) = T;Z(E)Ji(r) - dnmdLL,Hi(r ) ,  T being the path operator defined by 
(T;& - B)-l, Tc0h being the t-matrix for scattering from a single muffin-tin coherent 
potential, and B the structure factor for the given lattice. J ,  and Hi are the regular and 
irregular solutions for a single muffin-tin coherent potential centred at R,. 

If we take a jellium version of the above, and take Vcoh to be independent of r,  but 
still strongly energy dependent, then the expression is simplified somewhat, at the cost 
of losing some of the structure arising out of the lattice. 

G(r,  r r )  = ( - i ~ / 4 4 I :  [id=-<) - (j; ( K T S ) / ~ !  (KYS))]~~(K~>)YL(E)YL~(P') 

where;/ and hl are the spherical Bessel and Neumann functions and K' = 2(E - V&). 
We shall concentrate first on this simplified model. We shall choose I to be a sphere 

of radius rs and within it a pair of muffin-tin potentials in spheres of radii ro = rs. The 
potentials themselves we shall choose to be of the form V/r where V takes the values V, 
and V, with probabilitiesxA andxB respectively. The basis in I will be two s-like functions 
centred at the two muffin-tin centres rl and r2 (figure 1): xl (r )  = exp(-/r - rll) and 
x2(r) = exp( - Ir - r21), with respect to which the Hamiltonian X r  has the 2 X 2 matrix 
representation with elements 

Xll  = T + Ts - VIZl - V2Z3 + P(l/rs - iK) 

X Z 2  = T + Ts - V2Z1 - VIZ3 + P ( l / r s  - iK) 

X12 = T' + T& - ( V ,  + V2)Z2 + P(l/rs - iK) = X 2 ]  

where 
I 

T = -4 lors I-, d r  d t  r2 (1  - 2/rl)  

(4) 
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Figure 2. The density of states per atom in the pair 
(full curve) and single-potential (broken curve) 
approximations, for 6 = 5 - 1 = 4, xA = (a)  0.1, 
(6) 0.5, and (c) 0.9. (6 = iVA - VBl . )  

r i  = r2  + r i  + 2rrot r2 - 2 - r + rg - 2rrot 

Z2 = (e-"o /4ro) [3r0/2 - $ + (3r0/2 + 2) e-2ro] 

Z3 = (e-4ro/8ro) [(2r0 + 1) (cosh(2ro) - 1) - ro sinh(2ro)] 

Equation (2) for the coherent potential reduces to a cubic equation for K and the complex 
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E Figure 3. As figure 2 ,  but for 6 = 2 - 1 = 1. 

root with the herglotz analyticproperty is the correct choice for the problem. The Green 
function in this basis is a 2 x 2 matrix given by 6 = (X - ES)-’ and the density of states 
per atom is given by 

n(E) = -(1/2x) Im Tr ( S G ( E  - io)). ( 5 )  

It is interesting to note that the problem is very similar to the problem of a hydrogen- 
like molecule in I immersed in a coherent medium in 11. The various integrals involved 
in (4) are familiar two-centre integrals in the finite subspace I. If we had taken larger 
clusters, then the problem would have involved multi-centre integrals; the method of 
calculation of these has been developed well in molecular chemistry. 

Figures 2-4 show the density of states for the two-potential clusters, as compared 
with the earlier one-potential calculations reported in an earlier paper (Mookerjee and 
Bardhan 1989). The parameters chosen are the same as reported in that earlier paper 
with IVA - VBl = 4, 1 and 0.2 while xA = 0.1, 0.5 and 0.9. The principal new feature is 
the splitting of the lower-energy peak into bonding and anti-bonding structures. There 
is no such split in the higher-energy peak, probably because the spread in this energy 
regime caused by the large imaginary part in the surface potential related to K causes 
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E 

E Figure 4. As figure 2, but for S = 2 - 1.8 = 0.2. 

overlap and the two peaks are not resolved. If we had looked at a basis with d-like 
symmetry (as in the earlier paper), the structures would have been sharper and we would 
have expected considerable new structure to appear when we chose a larger cluster 
enveloped in I. 

For one of the cases we have also derived the pair potential from the generalised 
phase shift Z(E) 

where Z(E) = (-I/n) In det(GAAGBB/GABGBA) Gp4 is the Green function in which the 
potentials in the space I have the specific configurationpq (AA, BB or AB). 

This form of the pair potential E*, in terms of the generalised phase shifts, has been 
introduced recently by Barera et af  (1988). It is based on the generalised perturbation 
method of Ducastelle and Gautier (1976). The details of the derivation have been 
discussed by Ducastelle and Gautier (1976) and de Fontaine (1987). 
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Figure 5. The pair potential versus the position of EF for the same case as for figure 3. 

Figure 5 shows the pair potential as a function of the Fermi energy, which itself varies 
with the band filling according to 

n ( E )  = -1m d r G(r ,  r ’ ,  E + id). -l n I n ( E )  d E = XAnA f XBng (7) 

This figure is to be compared with the figure given by Barera et a1 (1988). Their work 
was on a FCC lattice, whereas we have taken a jellium background. While this would 
have quite a noticeable effect on the detailed structure of the density of states, the pair 
potential, being an integrated quantity, is not expected to show much variation with 
individual lattice structure. This is clear from the comparison of the two figures. Quali- 
tatively the pair potential of Barera et a1 (1988) is very similar to ours with the charac- 
teristic peak and regions of negative E2.  The characteristic shape tells us that for the 
given parameters of the model (xA  = 0.5, V A  = -2.0, VB = -1.0 units), for a given 
range of band filling such that the Fermi energy lies in the range (- 1.5 to - O S ) ,  the AB 
type of alloying is favoured. It does not tell us whether the alloy will be ordered or 
random. That can only be decided after we have compared the Gibbs free energies of 
the two orderings calculated from the pair potentials. There is also a range of band filling, 
with the Fermi energy lying above -0.5 units when the pair potential goes negative and 
AA- or BB-type bonding is favoured, leading to phase separation. The shape of the 
pair potential, of course, depends upon the parameters of the model. However, the 
characteristic shape with a region favouring AB-type bonding and another favouring 
phase separation seems to be a common feature. 

The single-potential CPA cannot be used to estimate the pair potential accurately, as 
that is essentially a two-potential property. For the given parameters of our model the 
ZCPA consistently predicts a favourable phase separation when compared with the 1CPA 
results. 

Our aim is the application of this formalism to estimate the effective cluster inter- 
actions in alloy systems, in order to tackle from first principles the problem of predicting 
temperature-concentration phase diagrams in these systems. The formalism proposed 
is general enough and tractable enough for this purpose. 
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